Найди верный ответ на вопрос по предмету Информатика, если вы не получили ответа или никто не дал верного ответа, то рекомендуется воспользоваться поиском и попытаться найти ответ на свой вопрос среди похожих запросов.
Новые вопросы по предмету Информатика:
Пусть выбраны гирьки с массами M1, M2, ..., Mn и ими удалось массу X.
Тогда имеет место равенство X = a1 * M1 + a2 * M2 + ... + an * Mn,
где ai = 0, если i-ая гирьке не участвовала в взвешиваниях, -1, если лежала на той же чаше весов, что и масса, которкю нужно отмерить, и +1, если на другой чаше весов.
Каждый из коэффициентов принимает одно из трёх значений, тогда при помощи n гирек можно отмерить не более, чем 3^n различных масс. 3^3 40 + 1 3^4, значит, гирек нужно не менее четырёх.
Докажем, что взяв гирьки с массами 1, 3, 9 и 27, можно отмерить любую массу от 1 до 40. Будем это делать по индукции, доказав, что при помощи гирек 1, 3, 9, ..., 3^k можно отмерить любую массу от 1 до (3^k - 1)/2.
База индукции. При помощи одной гирьки массой 1 действительно можно отмерить массу 1.
Переход. Пусть для k = k' всё доказано. Докажем и для k = k' + 1.
- Если нужно отмерить массу X = (3^k' - 1)/2, то это можно сделать при помощи k' гирек.
- Пусть надо отмерить массу (3^k' - 1)/2 X = (3^(k' + 1) - 1)/2. Кладём на другую чашу весов гирьку массой 3^k'. Тогда остаётся нескомпенсированная масса |X - 3^k'| = (3^k' - 1)/2, которую, по предположению, можно получить. Ура!
Ответ. 1, 3, 9, 27.