UROKAMNET.RU
Все задания под рукой
Флид
13.03.2024

3) Стороны параллелограмма имеют длины 24 и 25. Одна из его диагоналей равна 7. Найдите расстояние между прямыми, содержащими меньшие стороны параллелограмма.

Ответы (1)
  • Флеган 13.03.2024 0

    25^2 - 24^2 = (24-25) (24+25) = 49 = 7^2 = > 7^2 + 24^2 = 25^2Треугольник со сторонами 7, 24, 25 - прямоугольный (для длин выполняется теорема Пифагора), 7 и 24 - длины катетов.Расстояние между параллельными прямыми - длина перпендикуляра, опущенного из точки одной прямой на другую прямую. Противоположные стороны параллелограмма равны и параллельны. Диагональ длиной 7 перпендикулярна меньшей стороне параллелограмма и является искомым расстоянием.Ответ: 7


Знаете правильный ответ?

Думаешь ответы не верны?

Найди верный ответ на вопрос по предмету Геометрия, если вы не получили ответа или никто не дал верного ответа, то рекомендуется воспользоваться поиском и попытаться найти ответ на свой вопрос среди похожих запросов.

© 2025