1. Объем водорода при температуре 50 С и давлении 0,98 · 10^5 Па равен 2,5 · 10^-3 м3. Каков объем той же массы водорода при 0 С давлении 10^5 Па?
2. При давлении 10^5 Па и температуре 15 C воздух имеет объем 2*10^-3 м3. При каком давлении данная масса воздуха займет объем 4*10^-3, если температура его станет 20 C?
3. Воздух, содержащийся в резиновом шаре, при температуре 20 C и давлении 99,75 кПа имеет объем 2,5 л. при погружении шара в воду, тмпература которой 5 C, давление воздуха увеличилось до 2*10^5 Па. на сколько изменился объем воздуха в шаре?
4. Какова разница в массе воздуха, заполняющего помещение объемом 50 м^3, зимой и летом, если летом температура помещения достигает 40 C, а зимой до 0 С?
P.S. Если это возможно, я бы попросила вас написать решение на листке бумаги. Буду премного благодарна!
Ответы (1)
Морфий
05.11.2024
2
1.
По условию m=const. Тогда можно воспользоваться законом Клапейрона:
Воспользуемся правилом пропорции:
Отсюда можем выразить конечный объем V2:
м^3
2.
Задача в плане решения аналогична первой. Также воспользовавшись законом Клапейрона, получаем уравнение:
Откуда выражаем искомую величину P2:
Па
3.
Довольно долго ломал над ней голову. Так и не догадался, как посчитать температуру газа внутри шара, если известна температура воды, в которую он погружен... Причем по условию и не ясно: шар именно погрузили на некоторую глубину, или оставили некоторую часть его объема снаружи? В первом случае бы действовало давление P = p g h, во втором - Архимедова сила Fa = p g V. Ни высоты, ни объема не дано, и потому, когда я пытаюсь посчитать температуру без них, я выношу себе мозг. Поэтому будем считать, что за счет теплообмена с водой газ внутри шара имеет такую же температуру. Тогда по тому же закону Клапейрона приходим к уравнению:
Выражаем нужный нам объем в воде V2:
Теперь нужно посчитать изменение объема. Для этого вычтем из конечного значения начальное:
Ответ в метрах кубических, разумеется.
4.
Массу воздуха в первом и втором случае удобно выразить через закон Менделеева-Клапейрона:
Получим общую формулу для массы (применительно для наших случаев в ней будет меняться только температура, так как, очевидно, объем комнаты не меняется, молярная масса воздуха - тоже, давление - тоже (давление берем атмосферное)):
Как я и сказал выше - одинаковое в формулах масс давление, объем, молярная масса и, при том, универсальная газовая постоянная R. Вынесем их за скобки и посчитаем изменение массы:
Ответ, разумеется, в килограммах.
Знаете правильный ответ?
Думаешь ответы не верны?
Найди верный ответ на вопрос
по предмету Физика, если вы не получили
ответа или никто не дал верного ответа, то рекомендуется
воспользоваться поиском и попытаться найти ответ на свой
вопрос среди похожих запросов.
1.
По условию m=const. Тогда можно воспользоваться законом Клапейрона:
Воспользуемся правилом пропорции:
Отсюда можем выразить конечный объем V2:
м^3
2.
Задача в плане решения аналогична первой. Также воспользовавшись законом Клапейрона, получаем уравнение:
Откуда выражаем искомую величину P2:
Па
3.
Довольно долго ломал над ней голову. Так и не догадался, как посчитать температуру газа внутри шара, если известна температура воды, в которую он погружен... Причем по условию и не ясно: шар именно погрузили на некоторую глубину, или оставили некоторую часть его объема снаружи? В первом случае бы действовало давление P = p g h, во втором - Архимедова сила Fa = p g V. Ни высоты, ни объема не дано, и потому, когда я пытаюсь посчитать температуру без них, я выношу себе мозг. Поэтому будем считать, что за счет теплообмена с водой газ внутри шара имеет такую же температуру. Тогда по тому же закону Клапейрона приходим к уравнению:
Выражаем нужный нам объем в воде V2:
Теперь нужно посчитать изменение объема. Для этого вычтем из конечного значения начальное:
Ответ в метрах кубических, разумеется.
4.
Массу воздуха в первом и втором случае удобно выразить через закон Менделеева-Клапейрона:
Получим общую формулу для массы (применительно для наших случаев в ней будет меняться только температура, так как, очевидно, объем комнаты не меняется, молярная масса воздуха - тоже, давление - тоже (давление берем атмосферное)):
Как я и сказал выше - одинаковое в формулах масс давление, объем, молярная масса и, при том, универсальная газовая постоянная R. Вынесем их за скобки и посчитаем изменение массы:
Ответ, разумеется, в килограммах.