Теннисный мячик, двигавшийся со скоростью v1, испытывает абсолютно упругое соударение с ракеткой, движущейся ему навстречу со скоростью v2. Вектор скорости мячика в момент удара направлен под углом 45° к плоскости ракетки. Определите величину и направление скорости мячика после отскока от ракетки.
Ответы (1)
Мамли
21.04.2025
5
Дано: v₁ v₂ α=45° Найти: v, β Решение: Если бы ракетка была неподвижна, то мячик отскочил бы под таким же углом и таким же модулем скорости. Этот вектор скорости имеет координаты: v₁(x)=v₁ cosα=v₁/√2 v₁(y)=v₁ sinα=v₁/√2 v₁(v₁/√2; v₁/√2) Но ракетка сообщит ему еще одну составляющую v₂. Его координаты v₂(x)=v₂ v₂(y)=0 v₂(v₂; 0) Результирующая скорость мяча v является векторной суммой векторов v₁ и v₂. Тогда его координаты: v(v₂+v₁/√2; v₁/√2) Из геометрии прямоугольного треугольника имеем Модуль искомой скорости v=√((v₂+v₁/√2)²+(v₁/√2)²)=√(v₂²+v₂v₁√2+v₁²) tgβ=(v₂+v₁/√2)/(v₁/√2)=(v₂√2+v₁)/v₁ β=arctg((v₂√2+v₁)/v₁) Ответ: v=√(v₂²+v₂v₁√2+v₁²); β=arctg((v₂√2+v₁)/v₁)
Знаете правильный ответ?
Думаешь ответы не верны?
Найди верный ответ на вопрос
по предмету Физика, если вы не получили
ответа или никто не дал верного ответа, то рекомендуется
воспользоваться поиском и попытаться найти ответ на свой
вопрос среди похожих запросов.
Дано:
v₁
v₂
α=45°
Найти: v, β
Решение:
Если бы ракетка была неподвижна, то мячик отскочил бы под таким же углом и таким же модулем скорости. Этот вектор скорости имеет координаты:
v₁(x)=v₁ cosα=v₁/√2
v₁(y)=v₁ sinα=v₁/√2
v₁(v₁/√2; v₁/√2)
Но ракетка сообщит ему еще одну составляющую v₂. Его координаты
v₂(x)=v₂
v₂(y)=0
v₂(v₂; 0)
Результирующая скорость мяча v является векторной суммой векторов v₁ и v₂. Тогда его координаты:
v(v₂+v₁/√2; v₁/√2)
Из геометрии прямоугольного треугольника имеем
Модуль искомой скорости
v=√((v₂+v₁/√2)²+(v₁/√2)²)=√(v₂²+v₂v₁√2+v₁²)
tgβ=(v₂+v₁/√2)/(v₁/√2)=(v₂√2+v₁)/v₁
β=arctg((v₂√2+v₁)/v₁)
Ответ: v=√(v₂²+v₂v₁√2+v₁²); β=arctg((v₂√2+v₁)/v₁)